简体中文  |  English
  • 姜雪

    副教授

    通信地址:北京市海淀区学院路30号

    邮编:100083

    办公地点:科技楼201

    办公电话:13581997167

    邮箱:jiangxue@ustb.edu.cn

个人简介:

姜雪,北京科技大学材料基因工程高精尖创新中心副教授,硕士生导师。2014年和2017年获得北京师范大学计算机科学与技术学士和硕士学位,2020年获得北京科技大学材料学博士学位。具有材料和计算机双学科专业背景,长期从事大数据技术辅助材料研发和应用研究,以自然语言处理、大模型和机器学习技术为研究手段,在材料文献数据自动挖掘和人工智能驱动材料设计方面取得了重要成果。主持国家自然科学基金青年项目、广东省基础与应用基础研究基金地区培育项目、广东省重点研发计划课题1项,参与国家重点研发计划课题、国家自然科学基金联合重点项目、国家863计划课题以及多项企业合作课题。以第一/通讯作者身份在Acta Mater., npj Comput. Mater.、Scripta Mater.、npj Mater. Degrad.、 Scientific Data、ACS Appl. Mater. Interfaces等期刊发表文章30余篇,授权发明专利10余项。获第七届材料基因工程高层论坛杭州青山湖材料基因工程青年科学家奖。参与北京材料基因工程高精尖创新中心“材料基因工程系列课程”建设,讲授《材料设计基础》、《材料数据科学基础》和《材料大数据技术》等课程,参编教材《材料大数据技术》。兼任中国材料与试验团体标准委员会材料基因工程领域委员会委员。担任MGE Advances期刊青年编委, npj Comput. Mater.、Mater. Design、Mater. Charact.等期刊审稿人。荣获第七届材料基因工程高层论坛杭州青山湖材料基因工程青年科学家奖。与美国、日本等材料信息学专家长期深入合作研究。指导和联合指导多名硕士、博士生,指导的学生在学期间获得各类奖学金、优秀研究生、学术会议最佳墙报等荣誉。

研究方向:

1. 数据和知识双驱动的材料设计

2. 基于机器学习的钢铁工艺序列优化

3. 基于文本挖掘的材料数据自动抽取

4. 大语言模型在材料中的应用研究


科研业绩:

【代表性论文】

1. Tian, Shaohan, Xue Jiang*, Weiren Wang, Zhihua Jing, Chi Zhang, Cheng Zhang, Turab Lookman*, and Yanjing Su*. "Steel design based on a large language model." Acta Materialia 285 (2025): 120663.

2. Xue Jiang, Weiren Wang, Shaohan Tian, Hao Wang, Turab Lookman*, and Yanjing Su*. “Applications of natural language processing and large language models in materials discovery.” npj Computational Materials, (2025), accepted.

3. Zhang, Yan, Cheng Wen, Pengfei Dang, Xue Jiang*, Dezhen Xue*, and Yanjing Su*. Elemental numerical descriptions to enhance classification and regression model performance for high entropy alloys. npj Computational Materials, (2025), accepted.

4. NanYin, Junheng Liang, Xi Guo*, Xue Jiang*, Jie He*, Xiaotong Zhang. Semi-automatic construction of heterogeneous data schema based on structure and context-aware recommendation[J]. Scientific Data, 2025, 12(1): 190.

5. Yuwei Zhang, Fangyi Chen, Zeyi Liu, Yunzhuo Ju, Dongliang Cui, Jinyi Zhu, Xue Jiang*, Xi Guo*, Jie He*, Lei Zhang, Xiaotong Zhang & Yanjing Su. a materials terminology knowledge graph automatically constructed from text corpus. Scientific Data, (2024) 11:600.

6. Zhihao Qu, Kexin Cheng, Xue Jiang*, Zhu Wang, Yanjing Su, Lei Zhang*. A hybrid machine learning strategy for pitting probability prediction of stainless steels. Materials Today Communications 40 (2024) 109917.

7. Wang, Weiren, Xue Jiang*, Shaohan Tian, Pei Liu, Turab Lookman*, Yanjing Su*, and Jianxin Xie. "Alloy synthesis and processing by semi-supervised text mining." npj Computational Materials 9, no. 1 (2023): 183.

8. Lipeng Jiang, Liangliang Zhang, Xue Jiang*, Jihuan Xie, Guocai Lv, and Yanjing Su*. Cr3+-Yb3+-Ni2+ Tri-Doped NIR Phosphors with Spectral Output Covering NIR-I and NIR-II Regions. Adv. Mater. Technol. 2023, 2301495.

9. Lipeng Jiang, Xue Jiang,* Liangliang Zhang, Guocai Lv and Yanjing Su*. Spectrally tunable near-infrared photoluminescence in MP3O9:Cr3+ (M = Al, Ga, In) phosphate phosphors. Dalton Trans., 2023, 52, 17315.

10. Lipeng Jiang, Xue Jiang,* Mei Yang, Xinpeng Zhao, Changxin Wang, Panpan Gao and Yanjing Su *. Developing and optimizing novel Cr3+-activated inorganic NIR phosphors by combining triple-objective optimization and crystal field engineering. Inorganic Chemistry Frontiers 11.2 (2024): 487-497.

11.Lipeng Jiang, Xue Jiang,* Liangliang Zhang, Quansheng Liu, Xiaoyun Mi, Zhan Yu, Guocai Lv, and Yanjing Su*. Broadband Near-Infrared Luminescence in Garnet Y3Ga3MgSiO12:Cr3+ Phosphors. Inorg. Chem. 2023, 62, 4220−4226.

12. Lipeng Jiang, Liangliang Zhang, Xue Jiang*, Guocai Lv, Yanjing Su*. Multiple lattice sites occupied AlTaO4:Cr3+ phosphor for luminescence ratiometric thermometry and NIR light source. Journal of Alloys and Compounds 970 (2024) 172544.

13. Xue Jiang, Yu Yan*, and Yanjing Su. "Data-driven pitting evolution prediction for corrosion-resistant alloys by time-series analysis." npj Materials Degradation 6.1 (2022): 1-8.

14. Weiren Wang+, Xue Jiang+, Shaohan Tian, Pei Liu, Depeng Dang, Yanjing Su*, Turab Lookman*, and Jianxin Xie*. "Automated pipeline for superalloy data by text mining." npj Computational Materials 8, no. 1 (2022): 1-12.

15. Xue Jiang, Yu Yan*, and Yanjing Su. "Predicting the corrosion properties of cast and hot isostatic pressed CoCrMo/W alloys in seawater by machine learning." Anti-Corrosion Methods and Materials (2022).

16. Xue Jiang, Baorui Jia, Guofei Zhang, Cong Zhang*, Xin Wang, Ruijie Zhang*, Haiqing Yin* et al. "A strategy combining machine learning and multiscale calculation to predict tensile strength for pearlitic steel wires with industrial data." Scripta Materialia 186 (2020): 272-277.

17. Xue Jiang, Yong Wang, Baorui Jia*, Xuanhui Qu, and Mingli Qin*. "Using Machine Learning to Predict Oxygen Evolution Activity for Transition Metal Hydroxide Electrocatalysts." ACS Applied Materials & Interfaces 14, no. 36 (2022): 41141-41148.

18. Xue Jiang, Jianfang Liu, Yongzhi Zhao, Sijia Liu, Baorui Jia*, Xuanhui Qu, and Mingli Qin*. "Rational Design for Efficient Bifunctional Oxygen Electrocatalysts by Artificial Intelligence." The Journal of Physical Chemistry C 126, no. 45 (2022): 19091-19100.

19. Xue Jiang*, Yongzhi Zhao, Jianfang Liu, Baorui Jia*, Xuanhui Qu, and Mingli Qin*. "Machine Learning Captures Synthetic Intuitions for Hollow Nanostructures." ACS Applied Nano Materials 5, no. 11 (2022): 17095-17104.

20. Xue Jiang, Yong Wang, Baorui Jia*, Xuanhui Qu, and Mingli Qin*. "Prediction of Oxygen Evolution Activity for NiCoFe Oxide Catalysts via Machine Learning." ACS omega 7, no. 16 (2022): 14160-14164.

21. Rongen Yan+, Xue Jiang+, Depeng Dang*. Named Entity Recognition by Using XLNet-BiLSTM-CRF. Neural Processing Letters. 53, pages 3339–3356, (2021).

22. Xue Jiang, Baorui Jia*, Deyin Zhang, Haoyang Wu, Aiming Chu, Xuanhui Qu, and Mingli Qin*. "Hydrothermal synthesis of new CuVO2 delafossite hexagonal nanoplates." Ceramics International 46, no. 18 (2020): 28219-28226.

23. Xue Jiang, Ruijie Zhang, Cong Zhang, Haiqing Yin*, and Xuanhui Qu. "Fast prediction of the quasi-phase equilibrium in phase field model for multicomponent alloys based on machine learning method." Calphad 66 (2019): 101644.

24. Xue Jiang, Hai-Qing Yin*, Cong Zhang, Rui-Jie Zhang, Kai-Qi Zhang, Zheng-Hua Deng, Guo-quan Liu, and Xuan-hui Qu. "An materials informatics approach to Ni-based single crystal superalloys lattice misfit prediction." Computational Materials Science 143 (2018): 295-300.

25. 谢建新*, 宿彦京*, 薛德祯, 姜雪, 付华栋, 黄海友. 机器学习在材料研发中的应用. 金属学报 57, no. 11 (2021): 1343-1361.

26. 宿彦京, 付华栋, 白洋, 姜雪, 谢建新*. 中国材料基因工程研究进展. 金属学报 56, no. 10 (2020): 1314-1323.

 

【专利】

1. 宿彦京,姜雪,王伟仁,田少晗,谢建新.一种基于文本挖掘的科技文献数据自动抽取方法及系统,CN202110990945.2

2. 宿彦京,王伟仁,姜雪,田少晗. 一种材料制备加工工艺信息文本挖掘方法及系统,CN116467430 B.

 

【著作】

1. 《中国新材料技术应用报告2021》,化学工业出版社,参编

2. 材料基因工程系列教材《材料大数据技术》,冶金工业出版社,参编

3. 《材料信息学—数据驱动的发现加速实验与应用》(译著),高等教育出版社,参编


【近三年参加的部分学术会议】

1. 2024第二届数据驱动的高熵和非晶材料大会,邀请报告,福州,2024.12

2. 2024第八届材料基因工程高层论坛,邀请报告,宁德,2024.11

3. 2024第十一届中国功能材料及其应用学术会议,邀请报告,分会召集人,2024.5

4. 中国科学院学部科学与技术前沿论坛“大模型/AIGC的健康发展与赋能赋智”,邀请报告,南京,2024.1

5. 2023第七届材料基因工程高层论坛,获奖报告,重庆,2023.12

6. 2023第十四届中国钢铁年会,邀请报告,重庆,2023.10


版权所有©北京科技大学 建设与技术支持:信息化建设与管理办公室 京公网安备:110402430062 京ICP备:13030111